0=-16t^2+22

Simple and best practice solution for 0=-16t^2+22 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-16t^2+22 equation:



0=-16t^2+22
We move all terms to the left:
0-(-16t^2+22)=0
We add all the numbers together, and all the variables
-(-16t^2+22)=0
We get rid of parentheses
16t^2-22=0
a = 16; b = 0; c = -22;
Δ = b2-4ac
Δ = 02-4·16·(-22)
Δ = 1408
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1408}=\sqrt{64*22}=\sqrt{64}*\sqrt{22}=8\sqrt{22}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{22}}{2*16}=\frac{0-8\sqrt{22}}{32} =-\frac{8\sqrt{22}}{32} =-\frac{\sqrt{22}}{4} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{22}}{2*16}=\frac{0+8\sqrt{22}}{32} =\frac{8\sqrt{22}}{32} =\frac{\sqrt{22}}{4} $

See similar equations:

| 2x-57=807 | | X+34=2(x+4-1) | | 5a=6a-6 | | -x-32+3x=38 | | (2/5)x-4=(7/5)x | | xXx-9=0 | | 13x-8x-58=127 | | 5(n-4)=20 | | 49^x+7^(x+1)-18=0 | | (4x-8)+(3x+17)=180 | | 25c=-5 | | 3k-20=-5 | | 13y+7=6y | | 12b-2(b-1)=6-4 | | 7-x÷9=-3 | | b/6=-36 | | 17+a=-32 | | 3^x-2=17 | | 24(x-10)=6(x+15) | | -86+x-9x=66 | | 28=8-n | | -6u=4−10u | | 8x-40-15x=79 | | 6x-10=54 | | 125c=5 | | 7-5x+10+2x+4x-5=4+4*3 | | 20+x=13 | | 4(x+2)+5x=6(x+4 | | 108=x(x-3) | | 8h−3=9h | | 3c=1392 | | 6j=10+7j |

Equations solver categories